
A Priority Based Round Robin CPU Scheduling
Algorithm

Monika Belwal Sanjay Kumar
M.Tech Scholar, UTU, Dehradun Assistant Professor - CSE

 Uttarakhand Technical University, Dehradun Uttarakhand Technical University, Dehradun

Abstract— Operating system is an essential part of any
computer system. Scheduling is the basic paradigm of an
Operating System. Process scheduling is the technique of
arrangement of processes in order to execute in a defined
fashion. The aim of scheduling is to make the system efficient
and fast. The basic scheduling algorithms are: First Come
First Serve (FCFS), Round Robin, Priority Based Scheduling,
Shortest Job First (SJF) etc. Our main focus is on Round
Robin Scheduling algorithm. There are various issues related
to Round Robin Scheduling. One of the limitations of Round
Robin Scheduling is the length of the Time Quantum. If the
Time Quantum is too large, the scheduling will be similar to
FCFS otherwise a smaller Time Quantum results in increased
Context Switches. Our main objective is to overcome this
limitation of traditional Round Robin scheduling algorithm
and make maximum utilization of the CPU and make the
system more efficient. In this thesis, we proposed an algorithm
that categorizes the processes as High priority processes and
low priority processes. The proposed scheme reduces the
average waiting time of high priority process irrespective of
the low priority process. The overall average waiting time will
change according to the set of processes considered. Based on
the average waiting time, it is justified that the proposed
scheme provides reduced average waiting time of the process
set than previously proposed schemes.

Keywords- CPU Scheduling, Round Robin Scheduling,
Priority Scheduling, Waiting Time, Turnaround Time, Time
Quantum.

I. INTRODUCTION

 The practice of executing a process to acquire the CPU
control while the execution of another process is suspended (in
waiting state) due to unavailability of resources (such as I/O), thus
making full use of CPU is known as CPU scheduling [11]. The
aim of CPU scheduling is to make the system effective, reckless,
just & to maximize the utilization of CPU. The process
scheduling is the action of the process manager that handles the
removal of the running process from the CPU and the selection of
another process on the basis of a particular strategy. Process
scheduling is an indispensable part of Multiprogramming
operating systems [12]. The operating systems allow multiple
processes to be loaded into the executable memory at a time and
the loaded process shares the CPU using time multiplexing.
There are two types of CPU scheduling algorithms, preemptive
and non-preemptive. In the Pre-emptive category of scheduling
algorithms, a process which is allocated to the processor can be
stopped and the running state of the corresponding process is
changes to waiting state. [15]. The policy of temporarily
suspending the processes that are logically runnable is called

Preemptive Scheduling. The resources are allocated to a process
for a partial time. Process can be interrupted in between. If a
process with a high priority frequently arrives in the ready queue,
the process with low priority may starve. The limitation of
Preemptive scheduling is overheads of scheduling the processes.
In the non-pre-emptive category of scheduling, if a process has
been allotted to the CPU; the CPU cannot be taken away from
that process until the execution of the process is completed [16].
A process holding the processor releases only after its completion
not before that.
Although there are a number of CPU scheduling algorithms but
some of the common are; First in first out (FIFO), Shortest job
first (SJF), Priority scheduling and Round robin CPU scheduling
algorithm.

II. LITERATURE SURVEY

 In the FCFS scheduling, Jobs are implemented on first
come, first serve basis [1]. It can be a non-preemptive as well as
pre-emptive scheduling algorithm based on the necessities. It is
simple to comprehend and implement. The implementation of
FCFS is based on FIFO queue. The limitation of FCFS scheduling
is its poor presentation as average wait time is high.
This is also known as shortest job first, or SJF [3]. This algorithm
is both pre-emptive as well as non-preemptive by nature. It is
considered as the best methodology to decrease waiting time. It is
significant to implement SJF in Batch systems because the
essential CPU time is known in advance. The implementation of
SJF is not possible in interactive systems as the required CPU
time is unknown for such systems. The processer should know in
advance the amount of time the process will take.
Priority scheduling is a non-preemptive algorithm. Basically it is
one of the most common scheduling algorithms in batch systems
[5]. Each process is allotted a priority. The process with
maximum priority is to be executed first and so on. Processes
with identical priority are executed on first come first served
basis. The priority of the processes is allocated based on the
memory requirements, time requirements or any other resource
requirement.
Round Robin is the preemptive process scheduling algorithm.
Each process is delivered a fix time to execute, it is called a
quantum [8]. In this type of scheduling, a process is executed for
a particular time period called Time Quantum. When this Time
Quantum is reduced to zero, it is preempted and other process
start its execution for a given time period. Context switching is
needed to store status of preempted processes.
Multiple-level queues are manual scheduling algorithm [15]. This
algorithm uses other existing algorithms to group and organize
jobs with common features. Numerous queues are retained for
processes with mutual characteristics. Each queue can have its
peculiar scheduling algorithms [8]. Priorities are allotted to each

ISSN:0975-9646
Monika Belwal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (4) , 2017,475-478

www.ijcsit.com 475

queue. For example, OS-bound jobs can be arranged in one queue
and all I/O-bound jobs in another queue. The Process Scheduler
then in turn selects jobs from each queue and allots them to the
CPU based on the algorithm allotted to the queue. Multi-level
queue scheduling was generated for circumstances in which
processes are certainly categorized into different groups.

III. SHORTCOMINGS OF EXISTING ALGORITHM

 We have considered the traditional round robin algorithm as
the existing algorithm. The RR algorithm can be considered as an
efficient algorithm since it provides equal chance of execution to
all the processes in the process set. Research have shown that our
system consist of critical processes with high priority along with
the normal (low priority) processes. The RR algorithm does not
consider the priorities of the processes which can be considered as
the major drawback. So we proposed a methodology in order to
overcome this limitation of RR algorithm
Consider the following set of processes with time quantum 4 -

Table 1 Process in Ready Queue for Existing Methodology

Process Name Priority Burst Time

P0 0 5

P1 1 3

P2 1 12

P3 0 9

P4 0 8

We know that round robin scheduling provides equal opportunity
to execute all the processes in the process set. Hence, the Gantt
chart and waiting time for the above set of processes are shown in
figure 1.

Figure 1 Gantt chart of Existing Methodology

The average waiting time (AWT) of low and high priority
processes is shown below in figure 2.

Figure 2 Waiting Time Analysis of Existing Methodology

IV. PROPOSED METHOD

 The Round Robin algorithm considers the job with equal
priority. The processes are executed for a particular time slice
called Time Quantum (TQ) at a time. So, a process can be
executed until its time quantum (TQ) terminates or the process
terminates by its own after conclusion of its CPU burst time. The
processes contained in a system are of different priorities i.e. high
priority process and low priority process. The high priority
process or critical process may require the CPU on urgent basis
(i.e. program to shut down computer because of increased
temperature, alert on unauthorized access, etc.). The other types
of processes are with normal priority.
.

V. PROPOSED ALGORITHM

Our proposed algorithm is given below-

Step 1: Enter process name, priority and burst time.
Step 2: Store the above details in a queue called READYQ
Step 3: Create two separate queues, first HIGHPQ for high
priority processes and second LOWPQ for normal priority
processes.
Step 4: Do step 5 to step 11 until remaining CPU burst time of
processes of both the queues (HIGHPQ and LOWPQ) become
zero.
Step 5: Select next process from either HIGHPQ or LOWPQ on
alternate basis. First, a process form HIGHPQ must be selected as
it should get priority over normal priority processes.
Step 6: If the remaining CPU burst time of selected process is
greater than or equal to time quantum then do step 7, otherwise do
step 8.
Step 7: Execute that process for duration of time quantum.
Step 8: Execute the selected process until its remaining burst time
become zero.
Step 9: Update the remaining CPU burst time of the respective
process in respective queue.
Step 10: Store the IN-TIME and OUT-TIME of the process into a
table GANTTCHART.
Step 11: If above process has selected from HIGHPQ then swap
the next turn to LOWPQ and vice versa.

The high priority processes should get priority to execute. In this
research, I have proposed a methodology, which provides
alternate chance to high and low priority processes. A process
from high priority queue is selected first then next process is
selected from low priority queue. The steps for the methodology
are given below-

Monika Belwal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (4) , 2017,475-478

www.ijcsit.com 476

HIGHPQ: This queue contains the processes of high priority.

Process Name Priority Burst Time
P1 1 3

P2 1 12

LOWQPQ: This queue contains the processes of low priority.

Process Name Priority Burst Time
P0 0 5

P3 0 9

P4 0 8

The Gantt chart and waiting time for the processes of table
1 with time quantum 4 is shown below in figure 3.

Figure 3 Working of Proposed Methodology

VI. RESULTS AND ANALYSIS

In the figure shown below, using proposed algorithm the average
waiting time of high priority process is 7.5 which is
approximately half of average waiting time using existing
algorithm. The overall waiting time of process set is also reduced
using the proposed algorithm.

Figure 4 Result Analysis of Existing Vs Proposed

Methodology
The same result can be analyzed using bar chart shown in figure
5.

Figure 5 Result Analysis of Existing Vs Proposed

Methodology Using Bar chart

VII. CONCLUSION
 In this research, I have preserved the motivation of
traditional round robin that all process should get equal chance
to execute for a particular time quantum. The only improvement
is that if high priority process are stored at rear side in the ready
queue, then those processes will not bounded to execute too late
due to late arrival. The proposed methodology will definitely
reduce average waiting time of high priority processes however;
it may increase the average waiting time of normal priority
processes. The overall average waiting time of all the processes
stored in ready queue may or may not improve depending on the
set of processes. Although the proposed algorithm shows better
result for high priority processes, still there is always a need and
motivation for better results. In future, the result can be
improved using variable time quantum. The execution of
algorithm can also be improved by using efficient data
structures.

VIII. REFERENCES

[1] Sanjay Kumar Panda and Saurav Kumar Bhoi, “An Effective Round
Robin Algorithm using Min-Max Dispersion Measure”,
International Journal on Computer Science and Engineering, 4(1),
pp. 45-53, January 2012.

[2] Pallab Banerjee, Probal Banerjee, Shweta Sonali Dhal,
“Comparative Performance Analysis of Average Max Round Robin
Scheduling Algorithm (AMRR) using Dynamic Time Quantum with
Round Robin Scheduling Algorithm usingStatic Time Quanmtum”,
International Journal of Innovative Technology and Exploring
Engineering, 1(3), pp. 56-62,August 2012.

[3] P.Surendra Varma, “A Finest Time Quantum for Improving
Shortest Remaining Burst Round Robin (SRBRR) Algorithm”,
Journal of Global Research in Computer Science, 4 (3), pp. 10-15,
March 2013.

[4] Raman, Dr.Pradeep Kumar Mittal, “An Efficient Dynamic Round
Robin CPU Scheduling Algorithm (EDRR)”, International Journal
of Advanced Research in Computer Science and Software
Engineering, 4(5), pp. 907-910, May 2014.

[5] Silberschatz, A., P.B. Galvin and G. Gagne, Operating Systems
Concepts. 7th Edn., John Wiley and Sons, USA., ISBN:13: 978-
0471694663, pp. 944.

[6] Rakesh Mohanty, H. S. Behera, Khusbu Patwari, Monisha Dash,
“Design and Performance Evaluation of a New Proposed Shortest
Remaining Burst Round Robin (SRBRR) Scheduling Algorithm”,
Proc. of International Symposium on Computer Engineering &
Technology 2010, Vol 17, pp. 126-137, 2010 .

[7] R. J. Matarneh, “Seif-Adjustment Time Quantum in Round Robin
Algorithm Depending on Burst Time of the Now Running
Proceses”, American Journal of Applied Sciences, 6(10), pp. 1831-
1837, 2009.

[8] H. S. Behera, R. Mohanty, and D. Nayak, “A New Proposed
Dynamic Quantum with Re-Adjusted Round Robin Scheduling
Algorithm and Its Performance Analysis”, International Journal of
Computer Applications, 5(5), pp. 10-15, August 2010.

Monika Belwal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (4) , 2017,475-478

www.ijcsit.com 477

[9] Abraham Silberschatz, Peter Baer Galvin, Greg Gagne,
“Operating System Concepts”, Sixth Edition.

[10] E.O. Oyetunji, A. E. Oluleye,” Performance Assessment of Some
CPU Scheduling Algorithms”, Research Journal of Information
Technology,1(1): pp 22-26, 2009

[11] Ajit Singh, Priyanka Goyal, Sahil Batra,” An Optimized Round
Robin Scheduling Algorithm for CPU Scheduling”, (IJCSE)
International Journal on Computer Science and Engineering Vol. 02,
No. 07, 2383-2385, 2010.

[12] Rami J. Matarneh.“Self-Adjustment Time Quantum in Round Robin
Algorithm Depending on Burst Time of Now Running Processes”,
American J. of Applied Sciences 6(10):1831-1837, 2009.

[13] Sourav Kumar Bhoi, Sanjaya Kumar Panda, Debashee Tarai,
“Enhancing cpu performance using subcontrary mean dynamic
round robin (smdrr) scheduling algorithm” ,JGRCS, Volume 2, No.
12, December 2011, pp.17-21

[14] Rakesh Mohanty, H. S. Behera, Khusbu Patwari, Monisha Dash,
“Design and Performance Evaluation of a New Proposed Shortest
Remaining Burst Round Robin (SRBRR) Scheduling Algorithm”,
International Symposium on Computer Engineering & Technology
(ISCET), Vol 17, 2010

[15] P.Surendra Varma , “A FINEST TIME QUANTUM FOR
IMPROVING SHORTEST REMAINING BURST ROUND
ROBIN (SRBRR) ALGORITHM” Journal of Global Research in
Computer Science, 4 (3), March 2013, 10-15

[16] Rakesh Kumar Yadav, Abhishek K Mishra, Navin Prakash,
Himanshu Sharma,” An Improved Round Robin Scheduling
Algorithm for CPU Scheduling”, (IJCSE) International Journal on
Computer Science and Engineering Vol. 02, No. 04, 1064-1066,
2010

[17] Ishwari Singh Rajput,” A Priority based Round Robin CPU
Scheduling Algorithm for Real Time Systems”, (IJIET)International
Journal of Innovations in Engineering and Technology Vol. 1 Issue
3 Oct 2012

[18] Manish Kumar Mishra & Abdul Kadir Khan, (2012) “An Improved
Round Robin CPU Scheduling Algorithm”, Journal of Global
Research in Computer Science, Vol. 3, No. 6, pp 64-69.

[19] Abdulrazak Abdulrahim, Salisu Aliyu, Ahmad M Mustapha & Saleh
E. Abdullahi, (2014) “An Additional Improvement in Round Robin
(AAIRR) CPU Scheduling Algorithm”, International Journal of
Advanced Research in Computer Science and Software
Engineering, Vol. 4, Issue 2, pp 601-610.

[20] Abdulrazak Abdulrahim, Saleh E. Abdullahi & Junaidu B. Sahalu,
(2014) “A New Improved Round Robin (NIRR) CPU Scheduling
Algorithm”, International Journal of Computer Applications, Vol.
90, No. 4, pp 27-33.

[21] An Effective Round Robin Algorithm using Min-Max Dispersion
Measure. Panda, Sanjaya Kumar; Bhoi, Sourav
Kumar // International Journal on Computer Science &
Engineering;Jan2012, Vol. 4 Issue 1, p45

[22] Designing Various CPU Scheduling Techniques using
SCILAB. Saini, Mona // International Journal of Computer Science
& Information Technolo;2014, Vol. 5 Issue 3, p2918

[23] Self-Adjustment Time Quantum in Round Robin Algorithm
Depending on Burst Time of the Now Running
Processes. Matarneh, Rami J. // American Journal of Applied
Sciences;2009, Vol. 6 Issue 10, p1831

[24] Two Queue based Round Robin Scheduling Algorithm for CPU
Scheduling. Jindal, Srishty; Grover, Priyanka // International Journal
of Computer Applications;Nov2014, Vol. 105 Issue 1-18, p21

[25] A 2LFQ Scheduling with Dynamic Time Quantum using Mean
Average. Lenka, Rakesh K.; Ranjan, Prabhat // International Journal
of Computer Applications;6/1/2012, Vol. 47, p15

[26] Improvised Round Robin (CPU) Scheduling Algorithm. Sirohi,
Abhishek; Pratap, Aseem; Aggarwal, Mayank // International
Journal of Computer Applications;Aug2014, Vol. 99, p40

Monika Belwal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (4) , 2017,475-478

www.ijcsit.com 478

